<table>
<thead>
<tr>
<th>Course Unit Title</th>
<th>Manufacturing Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Unit Code</td>
<td>IE 314</td>
</tr>
<tr>
<td>Type of Course Unit</td>
<td>Compulsory, Industrial engineering students</td>
</tr>
<tr>
<td>Level of Course Unit</td>
<td>3rd year BSc</td>
</tr>
<tr>
<td>National Credits</td>
<td>3</td>
</tr>
<tr>
<td>Number of ECTS Credits Allocated</td>
<td>6 ECTS</td>
</tr>
<tr>
<td>Theoretical (hour/week)</td>
<td>3</td>
</tr>
<tr>
<td>Practice (hour/week)</td>
<td>-</td>
</tr>
<tr>
<td>Laboratory (hour/week)</td>
<td>-</td>
</tr>
<tr>
<td>Year of Study</td>
<td>3rd Year</td>
</tr>
<tr>
<td>Semester when the course unit is delivered</td>
<td>6</td>
</tr>
<tr>
<td>Mode of Delivery</td>
<td>Face to Face</td>
</tr>
<tr>
<td>Language of Instruction</td>
<td>English</td>
</tr>
<tr>
<td>Prerequisites and co-requisities</td>
<td>-</td>
</tr>
<tr>
<td>Recommended Optional Programme Components</td>
<td>-</td>
</tr>
</tbody>
</table>

Objectives of the Course:

- Aim of this course is to give students the fundamentals of materials science, traditional and modern manufacturing processes and systems, and the effects of materials and processing parameters in understanding manufacturing processes and operations.

Learning Outcomes

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>When this course has been completed the student should be able to</td>
<td>Assessment</td>
</tr>
<tr>
<td>1</td>
<td>Explain structure - property relationship.</td>
</tr>
<tr>
<td>2</td>
<td>Explain effects of external forces on material behavior.</td>
</tr>
<tr>
<td>3</td>
<td>Evaluate the applicability of particular materials for specific design requirements.</td>
</tr>
<tr>
<td>4</td>
<td>Describe traditional and modern manufacturing processes.</td>
</tr>
<tr>
<td>5</td>
<td>Identify appropriate manufacturing process to produce various products.</td>
</tr>
</tbody>
</table>

Course’s Contribution to Program

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CL</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ability to understand and apply knowledge of mathematics, science, and engineering</td>
</tr>
<tr>
<td>2</td>
<td>Ability to design and conduct experiments as well as to analyze and interpret data</td>
</tr>
<tr>
<td>3</td>
<td>Ability to work in multidisciplinary teams while exhibiting professional responsibility and ethical conduct</td>
</tr>
<tr>
<td>4</td>
<td>Ability to apply systems thinking in problem solving and system design</td>
</tr>
<tr>
<td>5</td>
<td>Knowledge of contemporary issues while continuing to engage in lifelong learning</td>
</tr>
<tr>
<td>6</td>
<td>Ability to use the techniques, skills and modern engineering tools necessary for engineering practice</td>
</tr>
<tr>
<td>7</td>
<td>Ability to express their ideas and findings, in written and oral form</td>
</tr>
<tr>
<td>8</td>
<td>Ability to design and integrate systems, components or processes to meet desired needs within realistic constraints</td>
</tr>
<tr>
<td>9</td>
<td>Ability to approach engineering problems and effects of their possible solutions within a well structured, ethically responsible and professional manner</td>
</tr>
<tr>
<td>10</td>
<td>Ability to design systems, processes or products by applying modern methods of work study, ergonomics, production systems and simulation while fulfilling requirements under realistic conditions</td>
</tr>
<tr>
<td>11</td>
<td>Ability to plan and improve system performance using production planning, quality planning and control, information system design and project planning techniques</td>
</tr>
</tbody>
</table>

CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate 4: High, 5:Very High)
Course Contents

<table>
<thead>
<tr>
<th>Week</th>
<th>Chapter</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Introduction to Manufacturing and Engineering Materials</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Nature of Materials</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Properties of Materials: Mechanical Properties; Physical Properties</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>Heat Treatment of Metals & Metal Alloys</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Class-Quiz 1</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>Metal Casting</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Midterm</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>Metal Forming and Sheet Metal Processes</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>Joining and Fastening Processes</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>Polymer and Ceramic Forming</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Class-Quiz 2</td>
</tr>
<tr>
<td>12</td>
<td>9</td>
<td>Non-Traditional Processes</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Project/Poster Presentations</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Final</td>
</tr>
</tbody>
</table>

Recommended Sources

Assessment

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poster/Project</td>
<td>15%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>-</td>
</tr>
<tr>
<td>Midterm Exam (Written)</td>
<td>30%</td>
</tr>
<tr>
<td>Quiz (Written)</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam (Written)</td>
<td>35%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

ECTS Allocated Based on the Student Workload

<table>
<thead>
<tr>
<th>Activities</th>
<th>Number</th>
<th>Duration (hour)</th>
<th>Total Workload (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course duration in class (including the Exam week)</td>
<td>15</td>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>Labs and Tutorials</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Assignments</td>
<td>3</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Project/Presentation/Report Writing</td>
<td>1</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>E-learning Activities</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quizzes</td>
<td>2</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Midterm Examination</td>
<td>1</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Final Examination</td>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Self Study</td>
<td>14</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>Total Workload</td>
<td></td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>Total Workload/30 (h)</td>
<td></td>
<td></td>
<td>5.6</td>
</tr>
</tbody>
</table>

ECTS Credit of the Course 6